S₄₂

COVALENCY IN FLUORIDE PEROVSKITES

J. Eméry

Laboratoire de Spectroscopie du Solide, U.A. no 807, Université du Maine, 72017 Le Mans Cédex (France)

In $[MF_6]^{n-}$ complexes, F^- ions permit us to measure and calculate covalency parameters through the superhyperfine interaction. In octahedral complexes the superhyperfine parameters $A_{//}$ and A_{\perp} are related to the transferred spin densities $f_s f_{\sigma} f_r$ by:

$$A = 49.6 \text{ R}^{-3} + 172 (f_{\sigma} - f_{\pi}) + 3.10^{3} \text{ f}_{s}; A = 24 \text{R}^{-3} - 86 (f_{\sigma} - f_{\pi}) + 3.10^{3} \text{ f}_{s}$$

The transferred spin densities are related to the covalency parameters

$$f_{\pi} = \frac{1}{4} \left(N_{t2g} \lambda_{\pi} \right)^2 f_{\sigma} = \frac{1}{3} \left(N_{eg} \lambda_{\sigma} \right)^2 f_s = \frac{1}{3} \left(N_{eg} \lambda_s \right)^2$$

where $N_i \lambda_i$ are defined through the antibonding orbitals :

 $\Psi_{t2g} = N_{t2g} \left(\Psi_{t2g} - \lambda_{\pi} \Psi_{2p\pi} \right) \Psi_{eg} = H_{eg} \left(\Psi_{eg} - \lambda_{\sigma} \Psi_{2p\sigma} - \lambda_{s} \Psi_{2s} \right)$ associated to the valence electrons. Ψ_i are (3d) metal orbitals, and the index in holds for the symmetry t_{2g} or e_g . Ψ_i are linear combinations of 2s and 2p orbitals. In reference [1] one presents our model. In table 1 one gives general results about covalency for (3d)ⁿ metal ions : V²⁺, Cr³⁺, Ni²⁺, Mn²⁺, Fe³⁺.

In reference 2 the results for different metal ligand distances are given for V^{2^+} and Cr^{3^+} . The calculated value $f_{\sigma} - f_{\pi}$ nearly varies as R^{-3} . We may notice that a law as R^{-3} permits us to calibrate R easily with the experimental anisotropic S.H.F. interaction since the dipole interaction varies as R^{-3} . For (3d)⁵ ions, the more surprising result is the increase of f_{σ} and ${}_{\sigma}f_{\pi}$ with R, for $[FeF_6]^{3^-}$ complexes (Ref. 4), at such a rate that for R > 1.9 A the ionic approximation is not consistent with the calculated value of f_{σ} .

In $KZnF_3$, the impurity which has a larger ionic radius than Zn^{2+} nearly would act as an hard sphere and would repel the nearest ligand. Conversely in the compact RbCdF_ lattice, the inward relaxation tends to a nearly compact

Conf.	Bond	f,	7	E.	z	fg	z	f	z	ΞĘ,	2	f _g	ť,	Ref.
			в	•	8	Λ	в		в	A	3			
(t _{2g}) ³	v ²⁺ y ⁻ 2.00 Å	o		-0.02	-0.1	0		-0.38	-0.3	2.6	2.8	-2.98	-3.1	[5]
[1,2]	Cr ³⁺ r 1.9 A	0		-0.02		o		-0.3		4.4	۸.	-4.52	-4.9	[6,7]
				1				111		1,2				
$(t_{2g})^6(e_g)^2$	N1 ²⁺ p ⁻ 2.00 Å	0.3	0.57	Ð	U	3.81	3.72	0	0	O	o	3.81	3.72	[8,9]
[3]	2.00 x			0	0	131		9	o	Ο.	o			
$(t_{2g})^{3}(e_{g})^{2}$	2.00 A		0.52			2.8				2.4		0.4	0.3	[10,11, 12]
[4]	Fe ³⁺ F	0.88	0.78			1.08				7.4		3.4	3.5	[12,13]
[1.9 Å					141				4		151		

Table 1 . Experimental (B) and calculated values (A) of spin densities. f'_{\cdot} reveal polarization mechanism on F^{-} ions.

arrangement of the ligands around the small impurity. In $KZnF_3$: Fe^{3+} we have choosen R = 1.9 A, i.e. a rather strong inward relaxation favoured by the small ionic radius and the extra positive charge of Fe^{3+} . One finds a good agreement between theory and experiments.

1 J. EMERY, J.C. FAYET, J. Physique, <u>41</u>, 1980, 1327

2 J. EMERY, J.C. FAYET, Solid State Commun, <u>37</u>, (1981), 971

- 3 J. EMERY, unpublished
- 4 J. EMERY, J.C. FAYET, Solid State Commun, <u>42</u>, n⁹9, (1982), 685

5 J.Y. BUZARE, J.C. FAYET, Phys. Stat. Solid, <u>67</u>, 1975, 455

6 A. LEBLE, Thèse de 3ème cycle (1974) Université de Caen, unpublished

- 7 R.G. SHULMAN, K. KNOX, Phys. Rev. Neth, 4, (1960), 603
- 8 J.Y. BUZARE, Thèse de 3ème cycle (1974) Université de Caen, unpublished
- 9 R.G. SHULMAN, S. SUGANO, Phys. Rev., 130, (1963), 306

10 R.G. SHULMAN, K. KNOX, Phys. Rev. 119, 1960, 94

- 11 M.B. WALKER, R.W.H. STEVENSON, Proc. Phys. Soc. 87, (1966), 35
- 12 J.J. ROUSSEAU, A. LEBLE, J.C. FAYET, J. Physique, <u>39</u>, (1978), 1215
- 13 H.H. RINNEBERG, D.A. SHIRLEY, Phys. Rev. Lect., 30 (1973), 1147
- 14 J.J. ROUSSEAU, Thèse d'Etat, Caen, unpublished
- 15 A.J. JACOBSON, L. MCBRIDE, B.E.F. FENCER, J. Phys. C7, 783 (1974)